Summary of RIKEN BNL workshop

P- and CP-odd effects in hot and dense matter

April 26-30, 2010

Talks online at: http://quark.phy.bnl.gov/~kharzeev/cpodd

Harmen Warringa, Goethe Universität, Frankfurt

Caveats

- 39 Talks + Th. + Exp. Discussion
Impossible to summarize all in 15 min.
Focus on relevance to glasma + experimental results.
I am very sorry if I do not talk about your results.
Talks online: http://quark.phy.bnl.gov/~kharzeev/cpodd

- It's a personal summary

Not necessarily the viewpoint of any workshop participant, or any other workshop organizer.

What was part of the workshop about?

P- and CP-odd effects might occur in hot matter How to observe these effects in data?

Theoretical Results

QCD: Topological charge fluctations

Different scenarios for generating topological charge fluctuations

- Quantum tunneling: <u>Instanton</u>, <u>Caloron</u> (finite T. instanton)

 Talks by Edvard Shuryak and Pierre van Baal
- Thermal activation: <u>Sphaleron</u>

 Talks by Guy Moore, Valery Rubakov and Edvard Shuryak
- In Glasma Talk by Larry McLerran

Topological charge + axial anomaly -> chirality = P- and CP-odd effect

Big question: How much chirality is generated in a heavy ion collision??

A possible way: The Chiral Magnetic Effect

in hot matter

Fluctuating charge asymmetry wrt. reaction plane

Charge asymmetry from topology + magnetic field seems very natural

Confirmation from Lattice QCD

Density of the electric charge vs. magnetic field, 3D time slices

Talk by Mikhail Polikarpov

Classical instanton (-like solution) Put it all together. It works...

Charge in top (z-)half of lattice from near-zero-modes. Dividing in x, y, or t gives zero, effect flips sign under $B_z \to -B_z$

Talk by Tom Blum

Charge asymmetry from topology + magnetic field seems very natural

Confirmation from analytic studies

- Large axial chemical potential μ_5 for some reason
- Leads to a vector current: charge separation
- π^+ and π^- would have anticorrelation in momenta
- Some experimental signal?
- Can be explained by j~ μ₅B Kharzeev, Fukushima, Warringa, McLerran...
- Chiral rotation effect: j~ μ₅ω

Vorticity in hydro

Talk by Dam Son

- spiral condensates arise naturally in 1+1 dim chiral models (NJL, 't Hooft, quarkyonic, ...) at finite μ
- strong B field generates dimensional reduction to 1+1
- generates charge separation along B field ("CME")
- transverse components of currents form chiral spirals ("chiral magnetic spiral")

Talk by Gerald Dunne

Problems with boundary terms in AdS/CFT Talks by Ho-Ung Yee and Anton Rebhan

Talk by Harmen Warringa

But there are alternatives

Talk by B. Mueller

Charge separation mech's (I)

- CGC mechanism: Two gluons from the initial nuclei fuse in the pseudo-scalar channel and generate an anomalous current during the peak phase of the magnetic field;
- Glasma mechanism: Gluons in the "glasma" generate an anomalous current in the strong magnetic field via a winding number fluctuation;
- QGP mechanism: Gluons in the equilibrated quark-gluon plasma generate an anomalous current in the strong magnetic field via a winding number fluctuation ("sphaleron");
- Corona mechanism: A neutral pion in the hadronic corona generates an anomalous current by converting into a rho-meson in the strong magnetic field;
- Hadronic gas mechanism: A neutral pion in the final hadronic gas phase generates an anomalous current by converting into a rhomeson in the strong magnetic field.

All have magnetic field.

Effect magnetic field on other observables. Lorentz force. Talk by A. Chikanian

+ others.... Initial state fluctuations + hydro evolution: *Talk by Hannah Petersen*

Quantify them all to find out which one dominates and can describe and explain all experimental data consistently.

Experimental Results

Experimental Results

Investigation of fluctuating charge asymmetries wrt. reaction plane

Talk by Sergei Voloshin

Charge correlations STAR

Also data at 62 GeV

min. bias, $|\eta| < 1.0$, $0.15 < p_t < 2 \text{ GeV/c}$

Red points:

Blue points:

Data cannot be explained by

HIJING HIJING+v2, MeVSIM, UrQMD

Au+Au and Cu+Cu @ 200 GeV

+/- signal in Cu+Cu is stronger, qualitatively in agreement with "theory", but keep in mind large uncertainties due to correlations not related to RP

page 12

P- and CP-odd effects in hot and dense matter, BNL, April 26-30 2010

S.A. Voloshin

Charge correlations STAR

Charge Asym. Correl. Results

$$A_{\pm,UD} = \frac{1}{N_{\pm,up} + N_{\pm,down}}$$

$$A_{\pm,LR} = \frac{N_{\pm,left} - N_{\pm,right}}{N_{\pm,left} + N_{\pm,right}}$$

Oppo-sign aligned; $(A_+A_-)_{UD} > (A_+A_-)_{LR}$ LPV expects: $(A_+A_-)_{UD} < (A_+A_-)_{LR}$ Contradicts LPV expectations.

Same-sign back-to-back in central, unexpected from *only* LPV.

Data:
$$\langle A^2 \rangle_{UD} > \langle A^2 \rangle_{LR}$$

LPV expects: $\langle A^2 \rangle_{UD} > \langle A^2 \rangle_{LR}$

P- and CP-odd Effects in Hot and Dense Matter -- Fuqiang Wang

7

Talk by Fuqiang Wang

4/29/2010

Charge correlations PHENIX

Talks by Roy Lacey

Consistent with STAR data

Charge correlations PHENIX

C_p insensitive to flow and jets

Talks by Roy Lacey

Another independent probe

Crucial to understand backgrounds

Background Dilemma

The "background" argument as per STAR papers

$$<\sin \left[\phi_{\alpha} - \Psi_{RP}\right] * \sin \left[\phi_{\beta} - \Psi_{RP}\right] > = B_{out} + P$$
 $<\cos \left[\phi_{\alpha} - \Psi_{RP}\right] * \cos \left[\phi_{\beta} - \Psi_{RP}\right] > = B_{in}$
 $B_{in} = B_{out}$?

What data do show: $\mathbf{B}_{out} \approx -\mathbf{P}$

Call for critical and detailed investigation:

- · what is in the background?
- fine-tuning cancellation? What? Why?
- Pt & eta differential study of projected correlations
- Projected correlations in CuCu
- Other observables?

Brookhaven, Apr 2010

Topological Components

12 / 30

NEED BOTH!

 $\cos \left[\phi_{\alpha} + \phi_{\beta}\right]$

 $\cos \left[\phi_{\alpha} - \phi_{\beta}\right]$

Talk by Jinfeng Liao

Also need to understand relation between different observables Discussion session by Paul Sorensen

My personal conclusions

- Topological charge fluctuations in the presence of external magnetic field lead to P- and CP-odd effects which cause <u>electric charge fluctuations</u> perpendicular to reaction plane. The magnitude is however uncertain.
- The magnetic field is only large at initial time, if the above mechanism is realized the <u>glasma</u> is key to its understanding.
- There are also <u>alternative mechanisms</u> for charge fluctuations. Need to quantify them all and come with detailed predictions, e.g. dependence on energy, species, impact parameter, rapidity, particle ID, etc.
- <u>Both</u> STAR and PHENIX have observed <u>charge correlations</u> in azimuthal angle. Evidence for fluctuating charge asymmetries. Need to understand <u>backgrounds</u> and make all observations <u>consistent</u>.
- In order to explain the source of the observed asymmetries, detailed <u>quantitative</u> predictions from theory are required, with help of additional results from experiment.

Talks online: http://quark.phy.bnl.gov/~kharzeev/cpodd

Backup slides

Ultra high-energy heavy ion collisions = Ultra strong (EM) magnetic fields

Pancake approximation Kharzeev, McLerran & HJW ('08) See also Minakata and Müller ('96)

URQMD calculation Skokov, Illarionov, Toneev ('09)

$$eB(\tau = 0.2 \text{ fm/c}) \approx 10^3 \sim 10^4 \text{ MeV}^2 \approx 10^{18} \text{ G}$$

Talks by A. Chikanian, Jorn Boomsma, Eduardo Fraga,